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Time domain in X-rays
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Transient behavior in X-ray observations provide
physical insight. Because most x-ray sources are
assoclated with accretion phenomena, so are
transients.
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Sudden increase in accretion rate in X-ray binaries.

Isotropic X-ray Luminosity at 11 hr (erg/s)
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Parameters are stellar masses, binary and disk o
dynamics, etc.
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Gravitational collapse. Thermonuclear explosions. SO L |l Berger2013
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Synchrotron afterglow in NS mergers. Relativistic Isotropic y-ray Energy (rg)

shocks due to interaction between jet and merger
ejecta.

At least some fast (few ks in duration) X-ray
transients might be associated with this latter
phenomenon.




Xue et al. 2019
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Serendipitous FXT found in Chandra data.
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Successtul systematic searches for FXRTs in the CSC
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Quirola-Vasquez et al. 2022
See also Yang et al. 2019

14 FXRTs that are consistent with extragalactic
origin

None detected as a sGRB.

Majority consistent with XRBs, ULXs, via
association with optical counterparts, X-ray
luminosity

For at least 3 FXRTs, their lack of optical
counterparts, luminosity range consistent with
off-axis GRBs, or TDEs

...progress here will crucially hinge upon the
ability of current and future X-ray
observatories to carry out efficient strategies
for (onboard) detection and alert generation to
trigger follow-up campaigns ”



The need for systematic and
automatic searches

What avenues of inquire are more likely to result in a sustained rate of discovery?

X-ray afterglow candidates can be found in existing and upcoming datasets, and
can be used to constrain merger models.
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includes, for e

X-ray observa;

events might signal the presence ot GW event precursors. This

xample, lensing events in X-rays, resulting from compact objects
INn orbit around each other.

ories are not yet suited for a

transient even

community)

s of the sort that are Iinterest

ert generation (at least not for
ng for the multi-messenger



X-ray astronomy from a data perspective

Data volume: 600/MB per day over a
“®

Navigating the eROSITA X-ray sky period of ~7yr: 1.5TB.
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The Chandra Source Catalog 2.0: a learning ground
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The catalog The algorithms
1.0ver 315,000 individual sources (over 450,000 in CSC 2.1) 1. Short term variability is estimated probabilistically using the Gregory-Loredo
algorithm.

2. About 1 million individual detections (Over 1.5 million on CSC 2.1) . . . e N
2.Light curves are weighted averages over different binning of the arrival times.

3. Tabulated astrometric, photometric, spectroscopic, and variability 3. Spectra is reduced by applying a redistribution matrix file and an auxiliary

properties. response file.
4. Data products: spectra, light curves, event files, background 4. They are complex functions that map the events into complex
maps, etc. SDSS cross-match catalog available. quantities.

https://cxc.cfa.harvard.edu/csc/threads/all.html



New data representations for transient identification

Edt map representation: a 2D
histogram of the event energies
and arrival time differences. Takes
the form of an image. Visual
representation of variability and
spectral hardness. Good input for
CNN approaches.

Graph representation: a set of objects
(nodes), where some of the pairs are
related. Event file pairs (photons
energies) can be related via their
difference in arrival times. No
information loss due to binning.
Summary statistics (HRs, variabilities)
can be associated to each graph.
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Step 1: Assemble (connected)
variable-length graph from
timeseries. Nodes are photon
energies (and x, y positions) and
connected by At;;
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Step 2: Use Graph Neural Networks
(GNNSs) to regress to known
summary statistics like hardness
ratios and variabilities to learn
posterior mean

560 evts, 17.16 hr

4366 evts, 5.51 hr

99 evts, 1.52 hr

-0.5 0.06 0.62 1.18 1.75 2.31 3.43 4.0
At

Step 3: Pass test data through
network and flag outliers in
prediction or latent space



A convolutional regressor for X-ray properties
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Regression results: A simple CNN
architecture learns a mapping from
event files to physically relevant
guantities, such as hardness ratios and
variabilities. For a given X-ray detection,
this by-passes a relatively complex
detection+source properties pipeline.
Incorporate into automatic processing?
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A Convolutional Neural Network
1. The input are Edt maps.

2. Single convolutional layer, followed by single dense,
fully connected layer.

3. Activation function are either logistic or tanh, which
naturally adapt to the probabilistic nature of the target
guantities

4. ADAM optimizer, MSE loss.

Hardness ratios
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Anomaly detection using an auto encoder

A
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A recipe for anomaly detection in X-ray datasets.

1. Start with a data set of Edt maps.

encoder decoder
2. Train an auto encoder model to encode the relevant

€o (aj) d¢ (z) information in a latent vector and reconstruct the original
image.

3. Use the reconstruction errors to flag objects as anomalies, i.e.
those that the algorithm has more trouble reconstructing.

A. Anwar 4. What are typical anomalous behaviors?

loss = ||z — Z||2 = ||z — dy(2) ]|, = ||z — dy(ea(T))l,
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Reconstruction error as an anomaly score

Objects that are less common in
the dataset are harder to

reconstruct with the auto encoder.
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Transients show up as anomalies in an exploratory search of the
Edt maps using neural networks.

A large fraction of these identified transients are not reported.

Possible nature”? Fast X-ray transients, x-ray binary flares,
gravitational lensing events,

A fraction of them show dips instead of flares.
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A transient (lensing”?) candidate
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model: (xsphabs.xbl * (xsapec.xal + xsapec.xa2))
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This transient is very likely real (i.e, the variability peak is statistically very
significant)

Soft spectrum, better fitted with APEC plasma with T ~ 0.2 keV.
Optical counterpart is a dim white dwarf, so a symbiotic is unlikely.
No sign of spectral variability during transient, which distavors flaring behavior.

We are investigating a potential lensing event.
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|_ooking for precursors: Gravitational self-lensing

30Mpc Chandra (300Mpc Lynz); q = 1.0
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* Periodic lensing signature of binaries within the LIGO frequency
A band can be detected with current X-ray observations, including
Chandra (at 30 Mpc, or with Lynx at 300 Mpc).
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e Systematic searches of archival and upcoming Chandra, XMM-
Newton, etc. can unveil more candidates.
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A few final thoughts...

X-ray transient detection is of astrophysical relevance for multi-messenger studies,
as well as the study of accretion phenomena

No automatic detection of transients happen as part of regular automatic
processing in Chandra or other X-ray observatories, but this needs to change
soon.

We can learn directly from the event files in a number of ways, leveraging
knowledge compiled in X-ray catalogs.

Spectrally hard/soft transients naturally come as anomalies. A trained algorithm
can spot them on the flight during regular processing for new data.

Trained algorithms for transient finding can be easily incorporated in the automatic
processing flow.
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XANDER:Anomaly detection using a graph regressor
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Step 2: Use Graph Neural Networks
(GNNSs) to regress to known
summary statistics like hardness
ratios and variabilities to learn
posterior mean

1. edge update

pass to MLP

>

time

A Graph Neural Network
1. The input event files represented as graphs.
2. A graph neural network is built by:

1. Updating nodes and edges by passing then and their
connections through an MLP

2. Aggregating the updated edges and nodes into a
vector with the desired dimension.

3. Do a global update status with a neural networks
operating on the aggregate

4. Predict for the summary statistics and use prediction
error to find anomalies.

model 1 model 2 model 3
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https://github.com/timakinen/xander



Some recent examples of related research...
Supervised classification of X-ray sources - Yang et al. 2021(https://
baas.aas.org/pub/2021n6i1132p02).

Automatic detection of Chandra background photons (R. Nevin et al.)

Resolving X-ray source confusion using spatial, temporal, and spectral
information (eBASCS, Meyer et al. 2021)

Recurrent neural networks applied to X-ray datasets for time-domain
analysis (Orwat-Kapola et al. 2021)

See the CDO Chandra Data Science Workshop for more (https://
cxc.harvard.edu/cdo/cds2021/)



